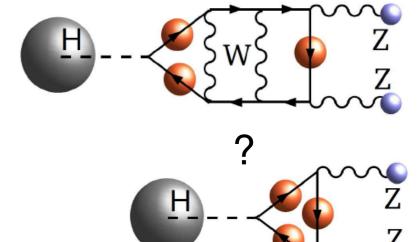
#### Status of Higgs CP Studies

Andrei Gritsan

Johns Hopkins University




September 1, 2021

Snowmass Energy Frontier Workshop, EF01/02 Session

## CP-violating H(125) Couplings

#### CP-violating H(125) couplings

- tiny in the SM, excellent null-test
- well-defined stand-alone reference measurement
- potential baryogengesis connected to the Higgs sector



- input to the global EFT fits, which currently focus on CP-even Operators
- -pp,  $e^+e^-$ ,  $\gamma\gamma$ ,  $\mu^+\mu^-$  ( $\sqrt{s}$ ) have their unique features in CP of H(125)
- complementarity to the EDM measurements and Flavor Physics

#### Identify key reference measurements to compare facilities

- focus on direct H production (including off-shell)
- connect to indirect (virtual, low-energy) probes

## EFT Approach to CP

- Tradeoff between complexity/reach and simplicity/scope
  - what is better to illustrate certain point: implications for colliders?

e.g. effective couplings were chosen for European Strategy (CP-even):

$$g_{HX}^{ ext{eff 2}} \equiv \frac{\Gamma_{H \to X}}{\Gamma_{H \to X}^{ ext{SM}}}$$

look for structure if we include CPV:

$$f_{\text{CP}}^{HX} \equiv \frac{\Gamma_{H \to X}^{\text{CP odd}}}{\Gamma_{H \to X}^{\text{CP odd}} + \Gamma_{H \to X}^{\text{CP even}}}$$

(<u>Snowmass-2013</u>)

$$\begin{aligned} \text{SMEFT}_{\text{ND}} &\equiv \left\{ \delta m, \, c_{gg}, \, \delta c_z, \, c_{\gamma\gamma}, \, c_{z\gamma}, \, c_{zz}, \, c_{z\square}, \, \delta y_t, \, \delta y_c, \, \delta y_b, \, \delta y_\tau, \, \delta y_\mu, \, \lambda_z \right\} \\ &+ \left\{ (\delta g_L^{Zu})_{q_i}, (\delta g_L^{Zd})_{q_i}, (\delta g_L^{Zv})_\ell, (\delta g_L^{Ze})_\ell, (\delta g_R^{Zu})_{q_i}, (\delta g_R^{Zd})_{q_i}, (\delta g_R^{Ze})_\ell \right\}_{q_1 = q_2 \neq q_3, \, \ell = e, \mu, \tau} \end{aligned}$$

**European Strategy 2019** 

## Higgs CP from Snowmass-2013

Higgs Working Group Report of the Snowmass-2013 Community Planning Study

Chapter 1.4 devoted to spin and CP: arXiv:1310.8361

-pp,  $e^+e^-$ ,  $\gamma\gamma$ ,  $\mu^+\mu^-$  ( $\sqrt{s}$ ) have their unique features in CP of H(125)

| Collider                          | pp                | pp                  | $e^+e^-$          | $e^+e^-$            | $e^+e^-$            | $e^+e^-$          | $\gamma\gamma$ | $\mu^+\mu^-$ | target      |            |
|-----------------------------------|-------------------|---------------------|-------------------|---------------------|---------------------|-------------------|----------------|--------------|-------------|------------|
| E (GeV)                           | 14,000            | 14,000              | 250               | 350                 | 500                 | 1,000             | 126            | 126          | (theory)    |            |
| $\mathcal{L}$ (fb <sup>-1</sup> ) | 300               | 3,000               | 250               | 350                 | 500                 | 1,000             | 250            |              |             |            |
| $spin-2_m^+$                      | $\sim 10\sigma$   | $\gg 10\sigma$      | $>10\sigma$       | $>10\sigma$         | $>10\sigma$         | $>10\sigma$       | S              | spin=0       | establish   | ned by now |
| $VVH^{\dagger}$                   | 0.07              | 0.02                | <b>√</b>          | <b>√</b>            | <b>√</b>            | <b>√</b>          | $\checkmark$   | <b>√</b>     | $< 10^{-5}$ |            |
| $VVH^{\ddagger}$                  | $4 \cdot 10^{-4}$ | $1.2 \cdot 10^{-4}$ | $7 \cdot 10^{-4}$ | $1.1 \cdot 10^{-4}$ | $4\!\cdot\!10^{-5}$ | $8 \cdot 10^{-6}$ | _              | _            | $< 10^{-5}$ |            |
| $VVH^{\diamondsuit}$              | $7 \cdot 10^{-4}$ | $1.3 \cdot 10^{-4}$ | $\checkmark$      | $\checkmark$        | $\checkmark$        | $\checkmark$      | _              | _            | $< 10^{-5}$ |            |
| ggH                               | 0.50              | 0.16                | _                 | _                   | _                   | _                 | _              | _            | $< 10^{-2}$ |            |
| $\gamma \gamma H$                 | _                 | _                   | _                 | _                   | _                   | _                 | 0.06           | _            | $< 10^{-2}$ |            |
| $Z\gamma H$                       | _                 | $\checkmark$        | _                 | _                   | _                   | _                 | _              | _            | $< 10^{-2}$ |            |
| $\tau \tau H$                     | <b>√</b>          | $\checkmark$        | 0.01              | 0.01                | 0.02                | 0.06              | $\checkmark$   | <b>√</b>     | $< 10^{-2}$ |            |
| ttH                               | <b>√</b>          | <b>√</b>            |                   |                     | 0.29                | 0.08              |                |              | $< 10^{-2}$ |            |
| $\mu\mu H$                        | _                 | _                   | _                 | _                   | _                   | _                 | _              | <b>√</b>     | $< 10^{-2}$ |            |

 $<sup>^{\</sup>dagger}$  estimated in  $H \to ZZ^*$  decay mode

$$f_{\text{CP}}^{HX} \equiv \frac{\Gamma_{H \to X}^{\text{CP odd}}}{\Gamma_{H \to X}^{\text{CP odd}} + \Gamma_{H \to X}^{\text{CP even}}}$$

<sup>&</sup>lt;sup>‡</sup> estimated in  $V^* \to HV$  production mode

 $<sup>^{\</sup>diamond}$  estimated in  $V^*V^* \to H$  (VBF) production mode

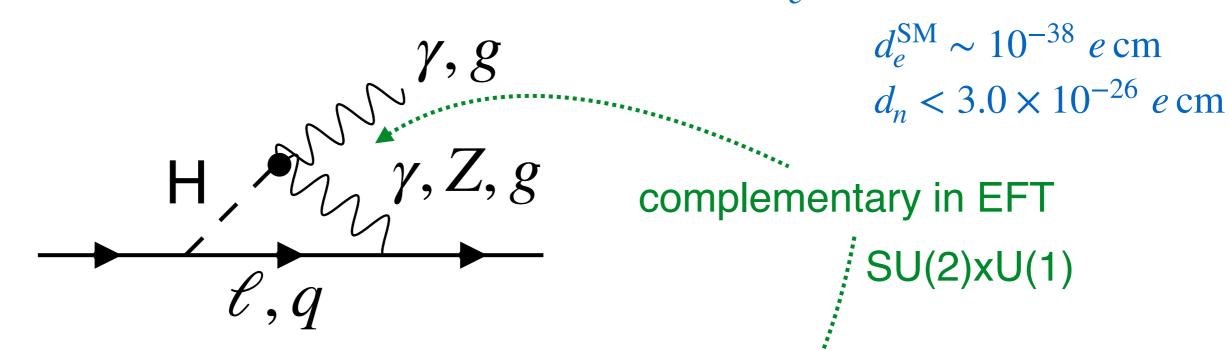
## Higgs CP from Snowmass-2013

Higgs Working Group Report of the Snowmass-2013 Community Planning Study

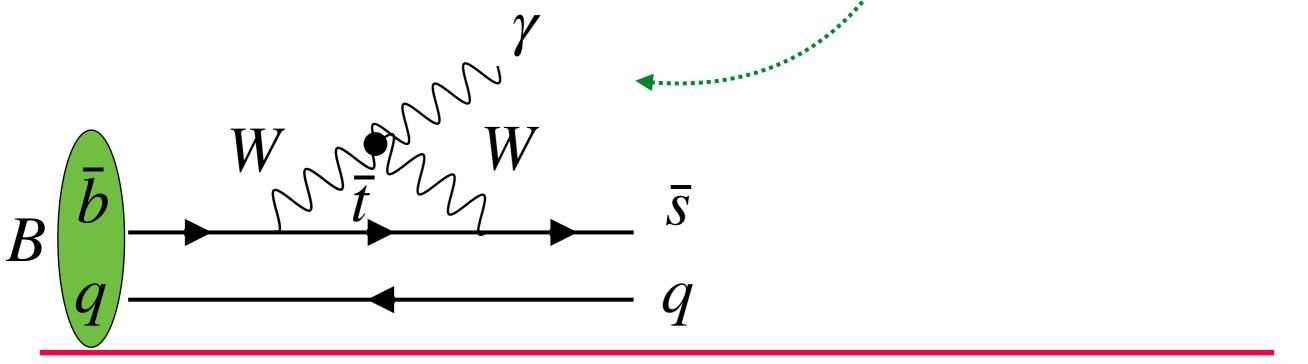
Chapter 1.4 devoted to spin and CP: arXiv:1310.8361

-pp,  $e^+e^-$ ,  $\gamma\gamma$ ,  $\mu^+\mu^-$  ( $\sqrt{s}$ ) have their unique features in CP of H(125)

|           | Collider                                                                                                                         | pp                | pp                  | $e^+e^-$            | $e^+e^-$            | $e^+e^-$            | $e^+e^-$          | $\gamma\gamma$ | $\mu^+\mu^-$ | target                                                    |                                     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|---------------------|---------------------|---------------------|-------------------|----------------|--------------|-----------------------------------------------------------|-------------------------------------|
|           | E (GeV)                                                                                                                          | 14,000            | 14,000              | 250                 | 350                 | 500                 | 1,000             | 126            | 126          | (theory)                                                  |                                     |
|           | $\mathcal{L}$ (fb <sup>-1</sup> )                                                                                                | 300               | 3,000               | 250                 | 350                 | 500                 | 1,000             | 250            |              |                                                           |                                     |
|           | $spin-2_m^+$                                                                                                                     | $\sim 10\sigma$   | $\gg 10\sigma$      | $>10\sigma$         | $>10\sigma$         | $>10\sigma$         | $>10\sigma$       |                |              | $>5\sigma$                                                |                                     |
| Ī         | $VVH^{\dagger}$                                                                                                                  | 0.07              | 0.02                | 7                   |                     |                     |                   |                |              | $< 10^{-5}$                                               | :                                   |
| gg        | $VVH^{\ddagger}$                                                                                                                 | $4.10^{-4}$       | $1.2 \cdot 10^{-4}$ | $7\!\cdot\!10^{-4}$ | $1.1 \cdot 10^{-4}$ | $4\!\cdot\!10^{-5}$ | $8 \cdot 10^{-6}$ |                | -            | $< 10^{-5}$                                               | sst                                 |
| couplings | $VVH^{\diamondsuit}$                                                                                                             | $7 \cdot 10^{-4}$ | $1.3 \cdot 10^{-4}$ | ✓                   | $\checkmark$        | ✓                   | $\checkmark$      |                | _            | $< 10^{-5}$                                               | interest                            |
| dnc       | ggH                                                                                                                              | 0.50              | 0.16                | – C(                | ompariso            | n acros             | ss facili         | ties           | _            | $< 10^{-2}$                                               | i.i                                 |
|           | $\gamma \gamma H$                                                                                                                | _                 | <del>-</del>        | _                   | _                   | _                   | <del></del>       | 0.06           | 1 -          | $< 10^{-2}$                                               | ca _                                |
| targeted  | $Z\gamma H$                                                                                                                      | _                 | <b>√</b>            | _                   | _                   | _                   | _                 | _              | _            | $< 10^{-2}$                                               | eti                                 |
|           | au 	au H                                                                                                                         | <b>√</b>          | <b>√</b>            | 0.01                | 0.01                | 0.02                | 0.06              | $\checkmark$   | <b>✓</b>     | $< 10^{-2}$                                               | theoretical                         |
| ta        | ttH                                                                                                                              |                   | <b>√</b>            | <u>—</u>            | _                   | 0.29                | 0.08              |                | <u> </u>     | $< 10^{-2}$                                               | <b>₽</b>                            |
|           | $\mu\mu H$                                                                                                                       |                   | _                   | _                   | _                   | _                   | _                 | _              | ✓            | $< 10^{-2}$                                               |                                     |
| -         | † estimated in $H \to ZZ^*$ decay mode<br>† estimated in $V^* \to HV$ production mode<br>of interest $f_{\text{CP}}^{HX} \equiv$ |                   |                     |                     |                     |                     |                   | _              | ГĊ           | P odd                                                     |                                     |
|           | † estimated in $V^* \to HV$ production mode                                                                                      |                   |                     |                     |                     |                     |                   |                |              | $I \rightarrow X$                                         |                                     |
|           |                                                                                                                                  |                   |                     |                     | action mode         |                     | of inte           | rest           | Cb —         | $\Gamma^{\operatorname{CP}\operatorname{odd}}_{H\to X}$ . | + $\Gamma_{H\to X}^{\text{CP eve}}$ |


Andrei Gritsan, JHU September 1, 2021

## Target for Snowmass-2022


- Revisit Snowmass-2013 studies
  - new realist LHC studies appeared e.g. CP in  $Htt, H\tau\tau, Hgg$
  - recent update from Higgs Physics at the HL-LHC and HE-LHC
  - new phenomenological studies performed
  - Effective Field Theory approach gained popularity
  - any new ideas, techniques, studies to be incorporated
- Plan to collect input in a Higgs CP writeup:
  - Gitlab area created: <a href="https://gitlab.cern.ch/snowmass21-ef01/higgs-cp">https://gitlab.cern.ch/snowmass21-ef01/higgs-cp</a>

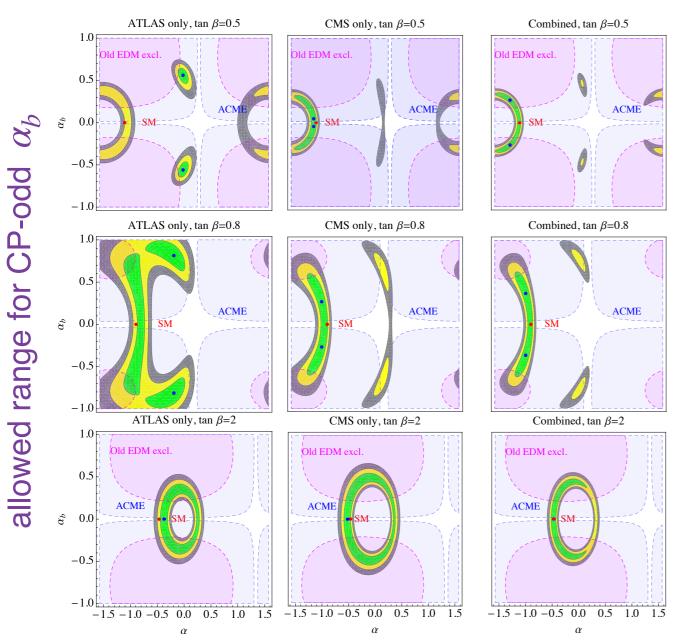
#### "Table-Top," "Lower-Energy," Direct H production

• Electric Dipole Moment (EDM) of electron  $d_e < 1.1 \times 10^{-29} e \, \mathrm{cm}$ 



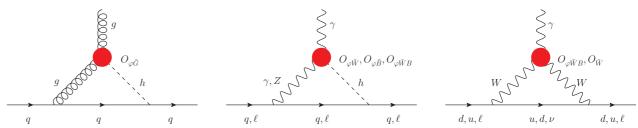
Heavy-Quark meson decays:



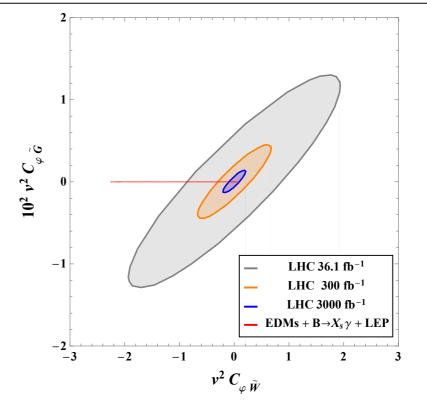

Andrei Gritsan, JHU 7 September 1, 2021

#### Theoretical Models and connection to EDM/B/EW

Representative model analysis


Hff in 2HDM: arXiv:1304.0773

- motivated  $f_{CP} < 0.01 \ (\alpha_b < 0.1)$
- to be updated to more recent results




• EFT analysis of EDM and LHC:

From tabletop to the LHC: <a href="mailto:arXiv:1903.03625">arXiv:1903.03625</a>



|                                | Low energy                  | $LHC (3000 \ fb^{-1})$      |
|--------------------------------|-----------------------------|-----------------------------|
| $v^2 C_{\varphi \tilde{B}}$    | [-0.4, 0.00]                | [-0.3, 0.3]                 |
| $v^2C_{\varphi\tilde{W}}$      | [-2.3, 0.02]                | [-0.17, 0.17]               |
| $v^2  C_{\varphi \tilde{W} B}$ | [-1.3, 0.01]                | [-0.39, 0.39]               |
| $v^2 C_{\varphi \tilde{G}}$    | $[-1.3, 1.3] \cdot 10^{-5}$ | $[-9.0, 9.0] \cdot 10^{-4}$ |



## Unique features of Facilities: $\gamma\gamma$ production

- Photon collider is unique with focus on  $H\gamma\gamma$  coupling
  - photon beam polarization is critical for CP
  - most interesting parameter:

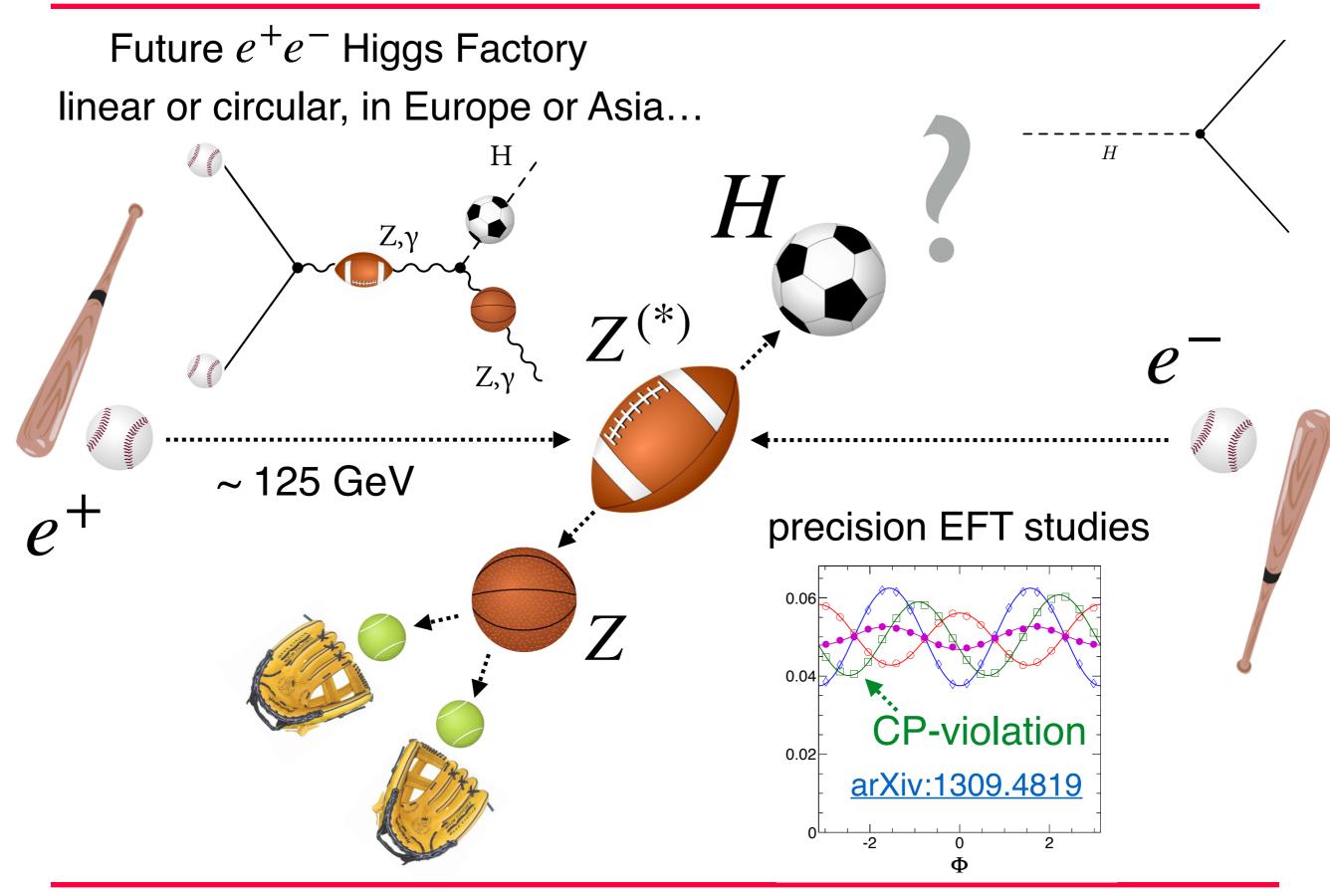
$$\mathcal{A}_{3} = \frac{|A_{\parallel}|^{2} - |A_{\perp}|^{2}}{|A_{\parallel}|^{2} + |A_{\perp}|^{2}} = \frac{2\mathcal{R}e\left(A_{--}^{*}A_{++}\right)}{|A_{++}|^{2} + |A_{--}|^{2}} = \frac{|a_{2}|^{2} - |a_{3}|^{2}}{|a_{2}|^{2} + |a_{3}|^{2}} = (1 - 2f_{CP})$$

Detecting and Studying Higgs Bosons at a Photon-Photon Collider: <a href="mailto:arXiv:hep-ph/0110320">arXiv:hep-ph/0110320</a>

measure as asymmetry between | and ⊥ linear polarizations

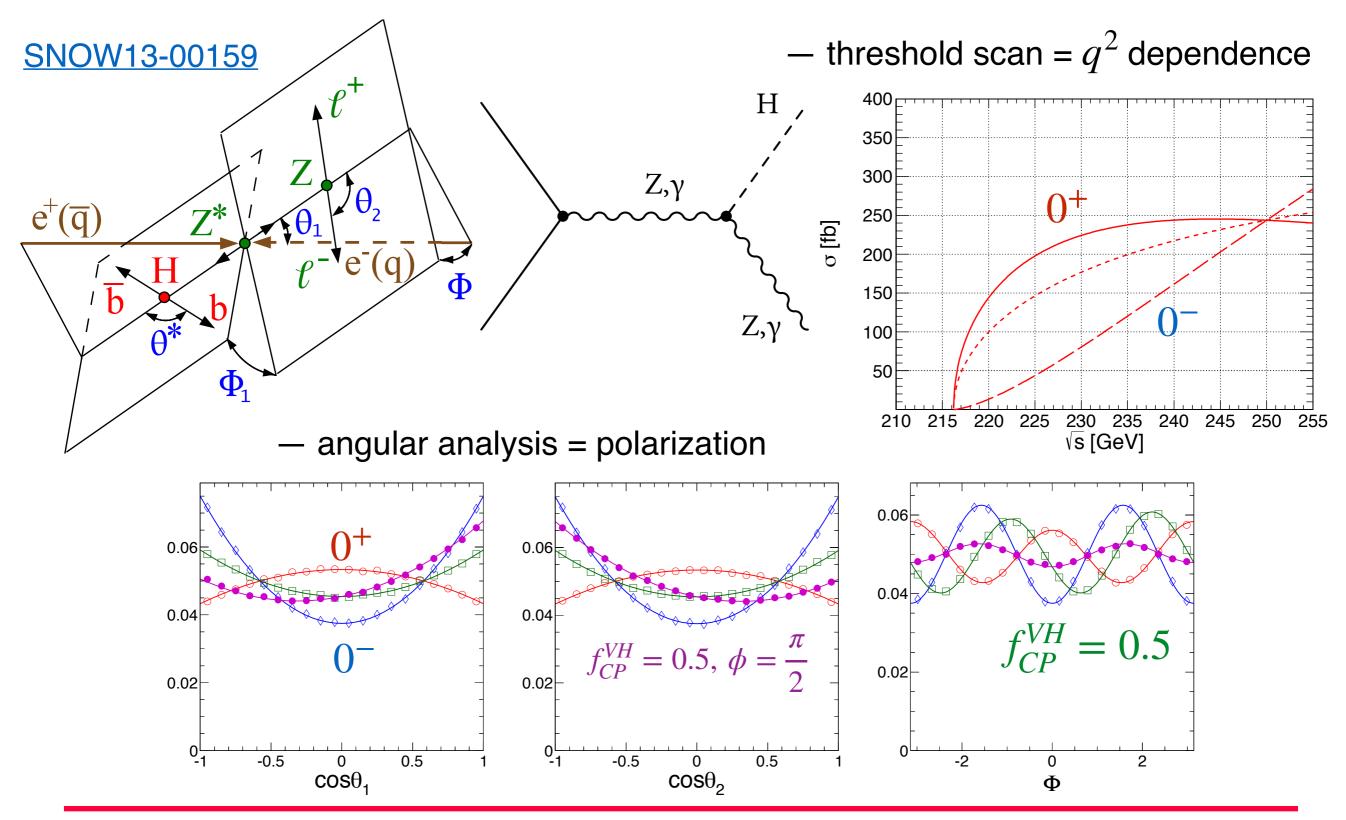
for 
$$E_0 = 110$$
 GeV and  $\lambda = 1 \,\mu\text{m}$ :  $f_{CP} = \sin^2(\alpha^{\gamma\gamma}) \sim \pm 0.06$  at  $2.5 \cdot 10^{34} \times 10^7 = 250 \, \text{fb}^{-1}$ 

- Interesting to revisit and compare to pp and  $e^+e^-$ 
  - need fair comparison: information from polarization, not cross section


# Unique features of Facilities: $\mu^+\mu^-$ production

- Muon collider is unique with focus on  $H\mu\mu$  coupling
  - muon beam transverse polarization is critical for CP
  - not many fermion couplings can be tested with polarization and CP later we will discuss  $H\tau\tau$  and Htt (both 3rd family)
  - same transverse polarization ⇒ CP-even
  - opposite polarization ⇒ CP-odd

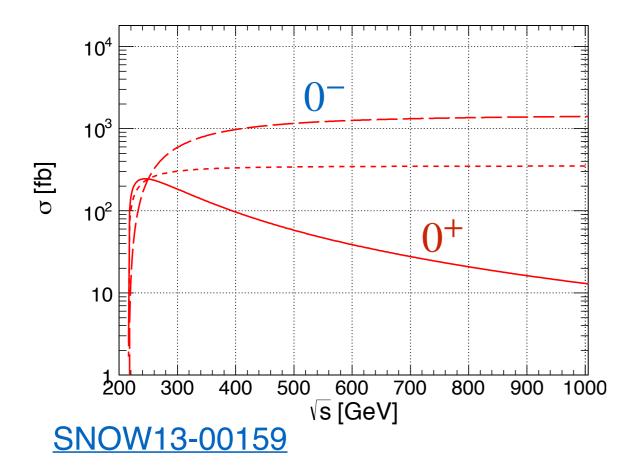
How Valuable is Polarization at a Muon Collider? A Test Case: Determining the CP Nature of a Higgs Boson: <a href="mailto:arXiv:hep-ph/0003091"><u>arXiv:hep-ph/0003091</u></a>


- Unique feature of the muon collider
  - though comes with a price of lumi, likely not a priority at first stage

# Unique features of Facilities: $e^+e^-$ production



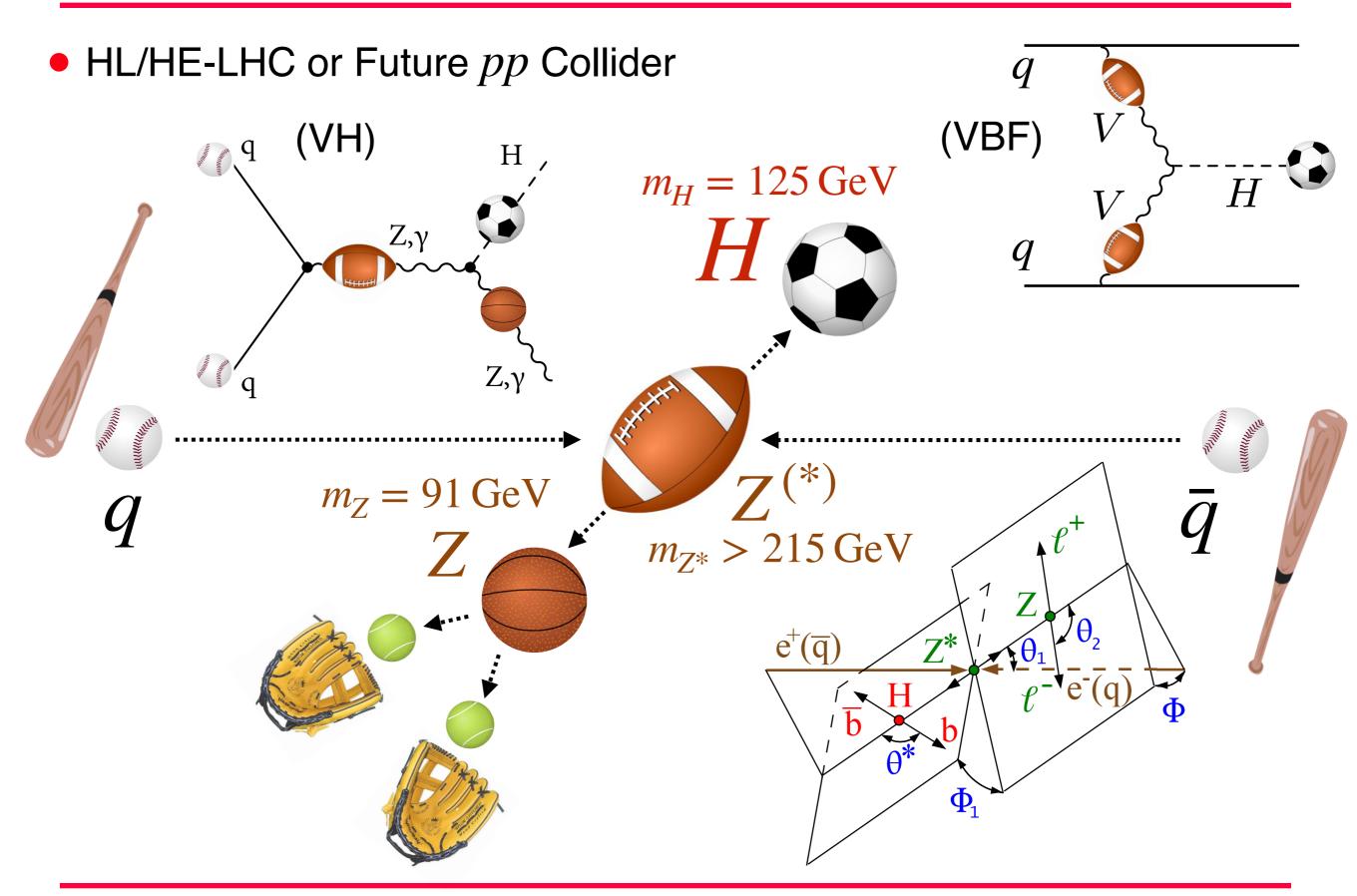
# Unique features of Facilities: $e^+e^-$ production


•  $e^+e^-$  collider  $\to Z^* \to ZH \Rightarrow HZZ, HZ\gamma, H\gamma\gamma$  couplings



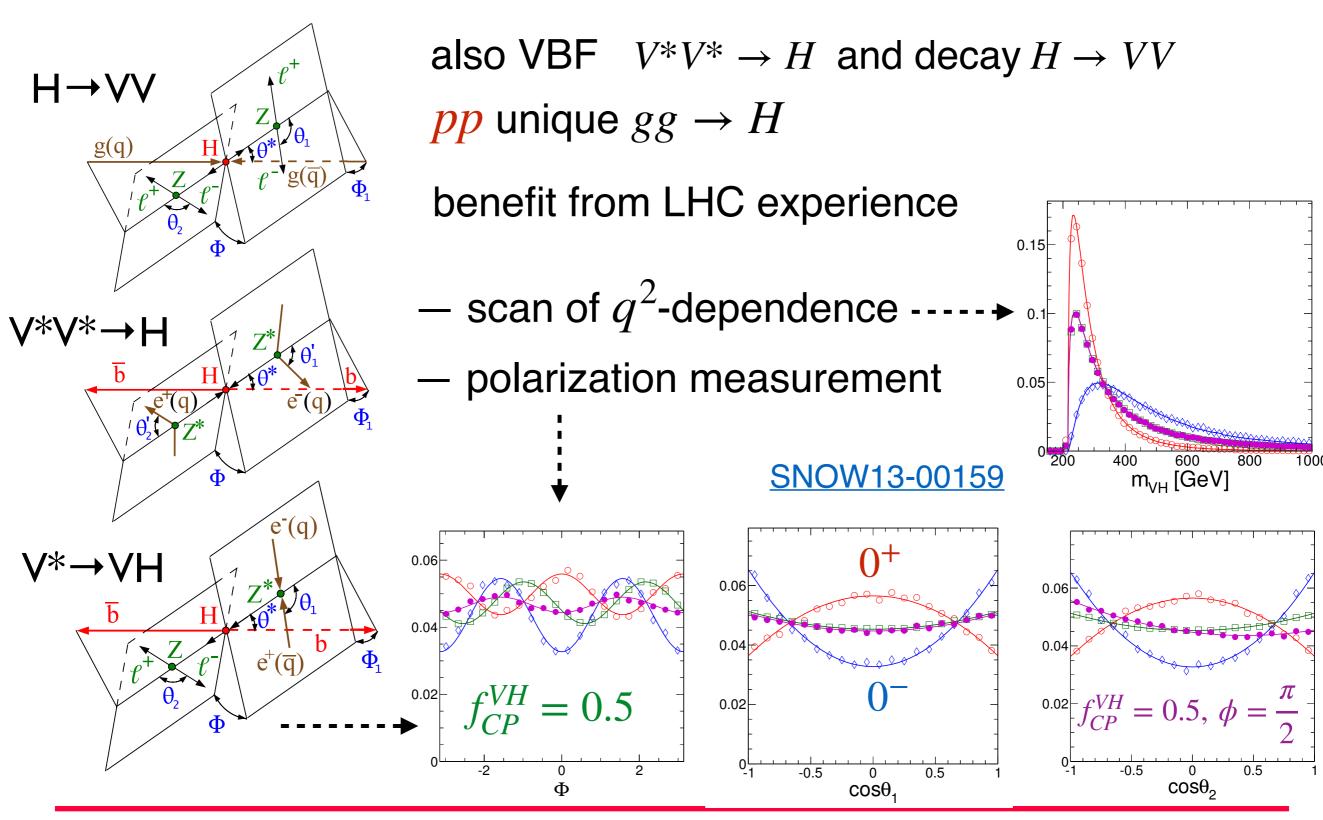
Andrei Gritsan, JHU September 1, 2021

## $e^+e^-$ production at higher energies (LC)


- $e^+e^-$  collider  $\to Z^* \to ZH$
- Scan  $q^2$  dependence of HVV couplings  $\Rightarrow$  increased sensitivity (without cutoff)



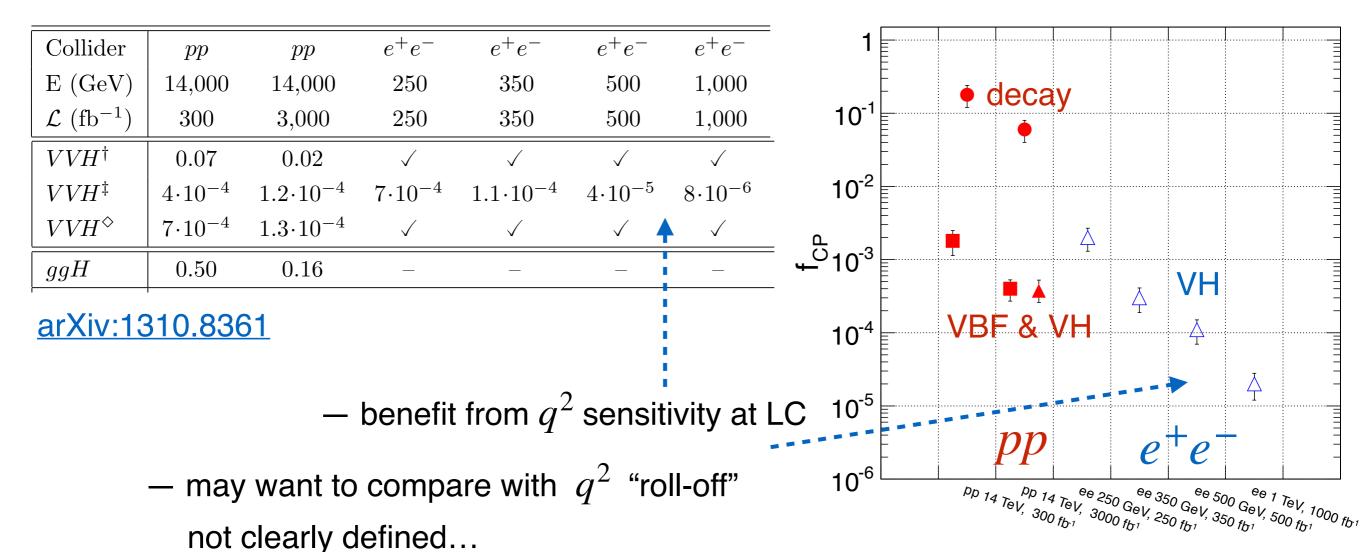
- Linear collider  $e^+e^- \rightarrow t\bar{t}H$ cross section dependence studied of  $0^+$  vs.  $0^$ need dedicated CP-sensitive study (see LHC studies)
  - VBF  $e^+e^- \rightarrow \nu \bar{\nu} H$


not much angular information  $q^2$ -dependence through  $p_T^H \dots$ 

## Unique features of Facilities: pp production



## Unique features of Facilities: pp production


•  $pp \rightarrow V^* \rightarrow VH \Rightarrow HWW, HZZ, HZ\gamma, H\gamma\gamma, Hgg$  couplings

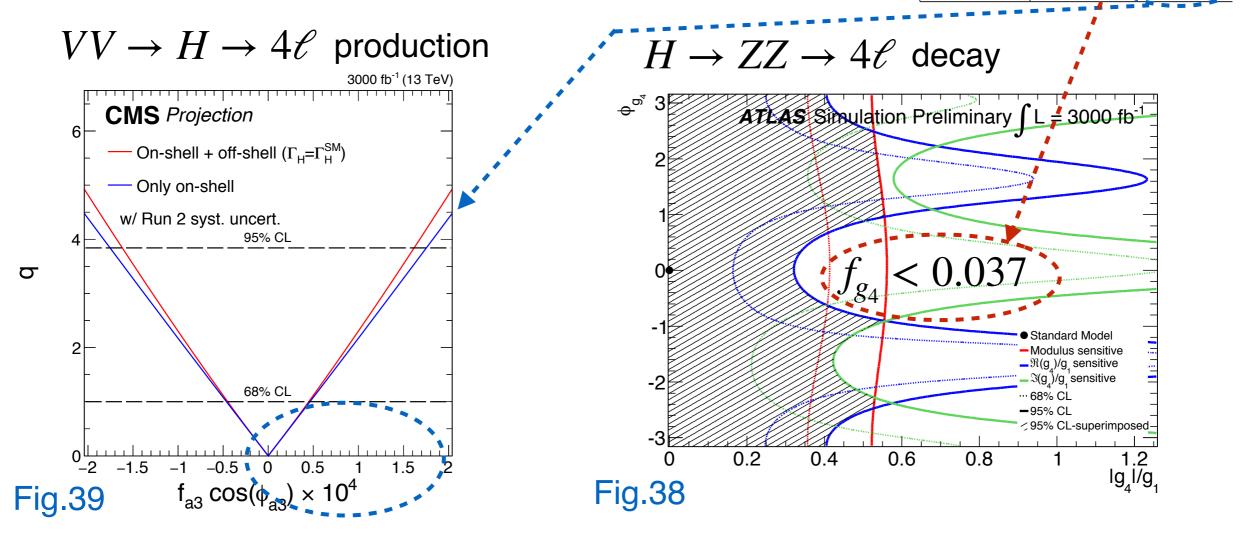


Andrei Gritsan, JHU September 1, 2021

# Compare Facilities: $e^+e^-$ and pp

- pp leads to wider spectrum of production modes, more decays
  - but reach in HVV comparable
  - $-q^2 = s$  at  $e^+e^-$ , from PDFs at  $pp \Rightarrow$  pros and cons




SNOW13-00159

## Update to recent LHC projections to HL-LHC

Higgs Physics at the HL-LHC and HE-LHC

WG2 report: <a href="mailto:arXiv:1902.00134">arXiv:1902.00134</a>
earlier <a href="mailto:HVV">HVV</a> projections are confirmed: with CMS & ATLAS full simulation

| Collider                          | pp          | pp                  |
|-----------------------------------|-------------|---------------------|
| E (GeV)                           | 14,000      | 14,000              |
| $\mathcal{L}$ (fb <sup>-1</sup> ) | 300         | 3,000               |
| $VVH^{\dagger}$                   | 0.07        | 0.02                |
| $VVH^{\ddagger}$                  | $4.10^{-4}$ | $1.2 \cdot 10^{-4}$ |
| $VVH^{\diamondsuit}$              | $7.10^{-4}$ | $1.3 \cdot 10^{-4}$ |

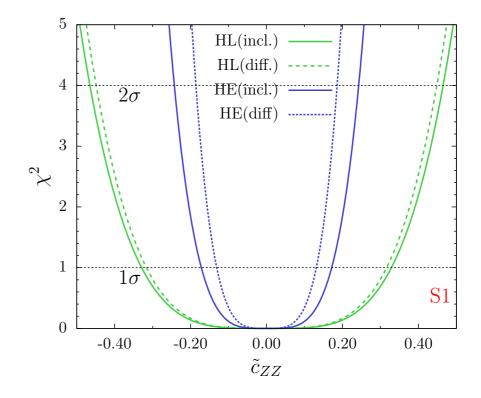


ullet agreement with most recent pheno HVV and Hgg projections  $\,$  arXiv:2002.09888  $\,$ 

Andrei Gritsan, JHU September 1, 2021

## Update to recent LHC projections to HL-LHC

Higgs Physics at the HL-LHC and HE-LHC

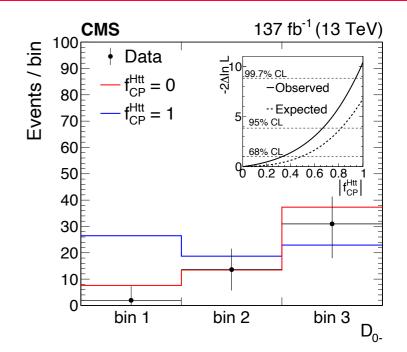

WG2 report: <u>arXiv:1902.00134</u>

Global fits also target CP-odd couplings

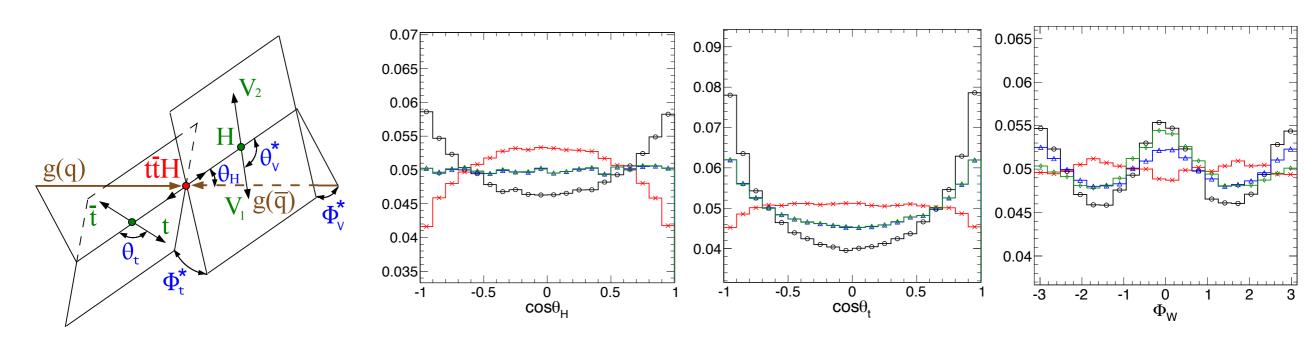
$$\chi^{2}(\tilde{c}_{Z\gamma}, \tilde{c}_{ZZ}) = \sum_{i,f} \frac{(\mu_{i,f} - \mu_{i,f}^{\text{obs.}})^{2}}{\Delta_{i,f}^{2}}$$

be careful to interpret yield as CP...

$$\begin{array}{ll} \mu_{ZH}^{14\text{TeV}} &=& 1.00 + 0.54 \ \tilde{c}_{Z\gamma}^2 + 2.80 \ \tilde{c}_{ZZ}^2 + 0.95 \ \tilde{c}_{Z\gamma} \tilde{c}_{ZZ} \\ \mu_{WH}^{14\text{TeV}} &=& 1.00 + 0.84 \ \tilde{c}_{Z\gamma}^2 + 3.87 \ \tilde{c}_{ZZ}^2 + 3.63 \ \tilde{c}_{Z\gamma} \tilde{c}_{ZZ} \\ \mu_{\text{VBF}}^{14\text{TeV}} &=& 1.00 + 0.25 \ \tilde{c}_{Z\gamma}^2 + 0.45 \ \tilde{c}_{ZZ}^2 + 0.45 \ \tilde{c}_{Z\gamma} \tilde{c}_{ZZ} \end{array}$$



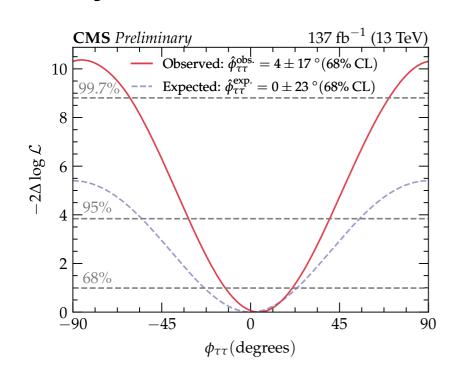

# Fermion couplings: $t\bar{t}H$ at pp

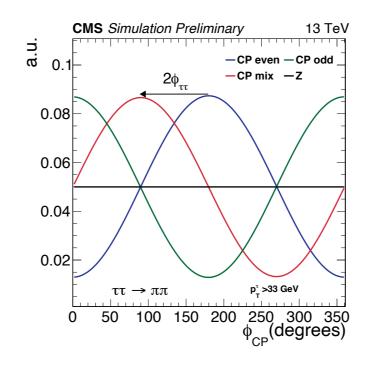

- Very first test of CP in Hff last year:
  - ttH spin-off from Snowmass-2013

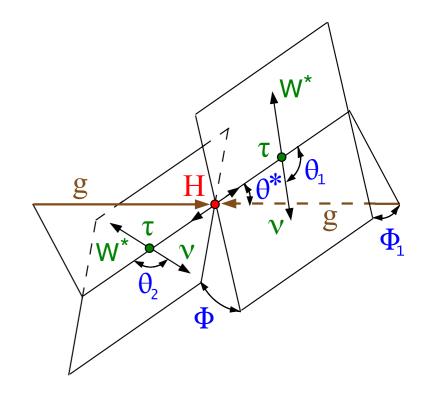
pheno projection agreement with CMS/ATLAS: arXiv:1606.03107

- reach  $f_{CP} \sim 0.1 \ (\alpha \sim 18^{\circ})$  at HL-LHC
- no sensitivity to  $2\text{Re}\left(A_{\text{CP even}}A_{\text{CP odd}}^*\right)$
- need di-lepton channel for CP interf: <u>arXiv:1507.07926</u>
- similar in tH; no sensitivity to  $b\bar{b}H$ , or other light q




CMS <u>arXiv:2003.10866</u> ATLAS <u>arXiv:2004.04545</u>





• Make comparison to LC  $e^+e^-$ , but looks statistics limited...

# Decay: $H \rightarrow \tau^+ \tau^-$ at pp

• Very first test of CP in  $H\tau\tau$  last year: CMS: CMS-HIG-20-006







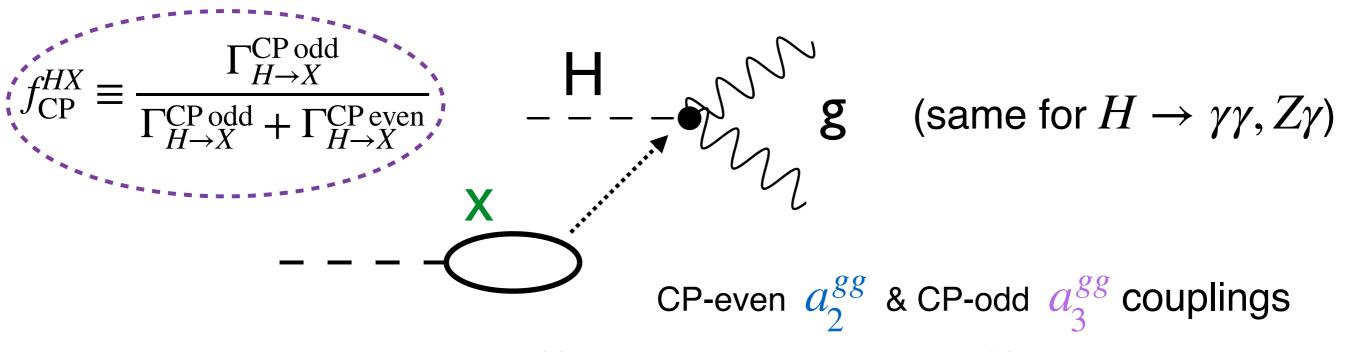
pp pheno studies at Snowmass-2013: <a href="mailto:arXiv:1308.1094">arXiv:1308.1094</a>

- reach  $f_{CP} \sim 0.04$  ( $\alpha \sim 11^{\circ}$ ) at HL-LHC
- will benefit from CMS (above) and ATLAS (?) studies, may be  $\alpha \sim 5^{\circ}$  ?

e<sup>+</sup>e<sup>-</sup> pheno studies at Snowmass-2013: arXiv:1308.2674

- the only CP in  $\it Hff$  at  $\it e^+e^ \it \sqrt{s} < 500~\rm GeV$
- reach  $f_{CP} \sim 0.008 \ \left(\alpha \sim 5^{\circ}\right)$  at  $e^{+}e^{-}$  ref. lumi

## Summary and Plans


- Higgs CP is a good reference measurement for Snowmass-2022
  - Snowmass-2013 is already a good starting point
  - Gitlab area created: <a href="https://gitlab.cern.ch/snowmass21-ef01/higgs-cp">https://gitlab.cern.ch/snowmass21-ef01/higgs-cp</a>
- Benefit from the past 8 years + 1 year ahead
  - sharpen theoretical expectations / models
  - connect to broader EFT

- $f_{\text{CP}}^{HX} \equiv \frac{\Gamma_{H \to X}^{\text{CP odd}}}{\Gamma_{H \to X}^{\text{CP odd}} + \Gamma_{H \to X}^{\text{CP even}}}$
- recent ATLAS & CMS analyses provide good guide for pp
- comparison to  $e^+e^-$  may be improved
- $-\gamma\gamma \& \mu^+\mu^-$  date back to Snowmass-2001, but may be not a priority...
- Focus on CP in: HWW, HZZ dominant tree-level HVV  $HZ\gamma, H\gamma\gamma, Hgg$  loop HVV with massless V  $Htt, H\tau\tau, H\mu\mu$  fermion Hff
  - & think about anything else...

# **BACKUP**

## Targeted CP-sensitive Couplings

Look at effective couplings, either within EFT or not



e.g. fermion loop 
$$a_2^{gg} = -\alpha_s \kappa_Q/(6\pi)$$
 &  $a_3^{gg} = -\alpha_s \tilde{\kappa}_Q/(4\pi)$ 

• Target HVV, Hgg, Hff couplings

## Targeted CP-sensitive Parameters

Somewhat more complicated with V=Z,W

$$A(\text{HVV}) = \frac{1}{v} \left[ a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} + \frac{\kappa_3^{\text{VV}} (q_{\text{V1}} + q_{\text{V2}})^2}{\left(\Lambda_2^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* - - - - \frac{q_{\text{V1}}}{\sqrt{1 + \frac{1}{v}}} \frac{q_{\text{V1}}^{\text{VV}} + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\sqrt{1 + \frac{1}{v}}} + \frac{1}{v} a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}}{\sqrt{1 + \frac{1}{v}}} \frac{q_{\text{V1}}^{\text{V1}} + \frac{1}{v} a_3^{\text{V1}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}}{\sqrt{1 + \frac{1}{v}}} \frac{q_{\text{V1}}^{\text{V1}} + \frac{1}{v} a_3^{\text{V1}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}}{\sqrt{1 + \frac{1}{v}}} \frac{q_{\text{V1}}^{\text{V1}} + \frac{1}{v} a_3^{\text{V1}} f_{\mu\nu}^{*(2),\mu\nu}}{\sqrt{1 + \frac{1}{v}}} \frac{q_{\text{V1}}^{\text{V1}} + \frac{1}{v} a_3^{\text{V1}}$$

May attempt full EFT expansion, but not necessarily the goal in this study...

$$\left|A_{\text{CP even}}\right|^2 + 2\text{Re}\left(A_{\text{CP even}}A_{\text{CP odd}}^*\right)$$

 $+ \left| A_{\text{CP odd}} \right|^2$ 

do not constrain to SM rate

$$=0 \Rightarrow \begin{array}{c} \text{kinematic} \\ \text{distributions} \end{array}$$

suppressed in EFT

true CP-sensitive observation but not always available

have to be clear if this term dominates

$$f_{CP} = \frac{\left|A_{\text{CP odd}}\right|^2}{\left|A_{\text{CP even}}\right|^2 + \left|A_{\text{CP odd}}\right|^2} = \sin^2(\alpha_{\text{eff}}) \; \qquad f_{\text{CP}}^{HX} \equiv \frac{\Gamma_{H \to X}^{\text{CP odd}}}{\Gamma_{H \to X}^{\text{CP odd}} + \Gamma_{H \to X}^{\text{CP even}}}$$
parameter of interest